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J. Phys. A: Math. Gen. 17 (1984) 3249-3266. Printed in Great Britain 

Prolongation structures of complex quasi-polynomial 
evolution equations 

Roger K Doddt and Alan P FordySO 
t School of Mathematics, Trinity College, Dublin 2, Ireland 
i Mathematics Department, UMIST PO Box 88, Manchester M60 IQD, UK 

Received 27 March 1984 

Abstract. We use Wahlquist-Estabrook prolongation theory to investigate second-order 
complex equations of generalised NLS-DNLS type. We isolate a number of new integrable 
cases. 

1. Introduction 

In 1975 Wahlquist and Estabrook (Wahlquist and Estabrook 1975) introduced their 
prolongation method of finding the linear scattering problem (assuming one exists) 
associated with a given nonlinear evolution equation. In 1976 (Wahlquist and 
Estabrook 1976) they applied their method to the nonlinear Schrodinger ( NLS) 

equation 

iu,  = uxx +2u2u (1.1) 

where ti is the complex conjugate of U and i = d- 1. They gave a 'systematic' derivation 
of the result of Zakharov and Shabat (1972), who had introduced the linear scattering 
problem 

corresponding to (1.1). Since 1976 there has grown quite a long list of papers which 
either elaborate on the geometrical structure of prolongation theory or apply the method 
to various partial differential equations (see Kaup 1980 and references therein). 

In a recent paper (Dodd and Fordy 1983) which we shall refer to as I, the present 
authors gave a detailed discussion of the prolongation method, but viewed as a 
(potential) algorithm. There are two main steps in any prolongation calculation: the 
first is to start with a differential equation and, after some work, derive a set of 
generators and relations for an incomplete Lie algebra (the prolongation algebra) ; the 
second step is to complete this Lie algebra and find a finite matrix representation for 
the derived set of generators. 

In I we mainly discussed the prolongation structure of real, quasi-polynomial 
evolution equations. Such equations have the form 

up = K"[uO]  i 1.3) 
8 Present address: School of Mathematics, University of Leeds, Leeds LS2 9JT, UK. 
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where K"[up] is a quasi-polynomial function of u p  and their x-derivatives; that is, 
K "  is a polynomial in the x-derivatives of u p  with coefficients which are almost 
everywhere C" functions of the u p  themselves. These equations are particularly simple, 
so we were able to present a genuine algorithm for the first half of the corresponding 
prolongation calculation. We derived the prolongation structure of several examples 
of quasi-polynomial flow. Among these was the complex equation 

iq, = qTX +2iq@, ( 1.4) 

which is a version of derivative nonlinear Schrodinger equation introduced by Chen 
et a1 (1979). This equation was presented as an interesting example even though it 
did not strictly fit into the scheme of our algorithm. 

The purpose of the present paper is to investigate the class of second-order 
equations: 

u , = a ( u , u ) u , , + b ( u , u ) U , , + K ( u , ~ , u , , u , )  ( 1  5) 
and derive a restricted form of K in order that (1.5) be integrable. In addition we 
extend the algorithm to the case of complex, quasi-polynomial flows. This is done in 
0 2 for the general case although we make no further use of this algorithm in the 
remainder of this paper and is included for completeness. 

Equation ( 1.5) represents a very broad class of equations and it is beyond the scope 
and aims of this paper to derive the complete set. The conditions imposed upon K 
are insufficient to completely determine this function. However, if one uses prolonga- 
tion theory in conjunction with symmetry arguments it is possible to derive a restricted 
class of K for which (1.5) is integrable. In particular, in 0 3 we use a scaling argument 
to derive a wide class of such equations. This includes all the previously known single 
component complex equations, but several others. In particular, we derive the linear 
problems for 

(1.6) 

(equation (3.33)), which is a generalisation of the NLS equation, and (equation (3.29)) 

U, = iu,, +2c2( u 3 / 2 ~ 1 / 2 ) x  + c,u22 

U, = i U,, + cI UUU, + c2 U'U, - ai c2( 2c2 - c, ) u3 U'. ( 1.7) 

This equation is a generalisation of both the KaupNewell  DNLS ( c1 = 2 4  and that 
of Chen et a1 (1979) (c2=O). We also show that (equation (3.7)) 

U, =iu,, -(2i/U)u,u, (1.8) 

discussed by Nijhoff et a1 (1982), is simply related to the NLS equation by Q = u,/G. 
Generalised symmetries are discussed in appendix 1. We derive conditions on K 

such that (1.5) (with b=0,  constant a )  possesses a commuting third-order flow. 
However, this method is not very efficient and to derive the full set of conditions would 
involve an enormous amount of work. 

In our previous paper we discussed prolongation algebras in great detail. For large 
systems of equations it is necessary to consider arbitrarily large Lie algebras. It was 
therefore necessary to develop a lot of abstract algebraic machinery to handle large 
prolongation algebras. The specific equations we deal with in the present paper are 
all associated with the smallest of simple Lie algebras, sl(2, C )  apart from the example 
of appendix 4. The standard basis for sl(2, C )  satisfies the following set of commutation 
relations: 

[h ,  e+] = 2e+, [ h ,  e-] = -2e-, [e,, e-] = h. (1.9) 
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In the fundamental representation these elements are given by: 

(1.10) 

For this paper the following automorphisms of sl(2, C)  will prove useful: 

e+ + Ae+, h + h, e-+ A-le- (1 . l l a )  

e+ + eiee+, h + h, e- + e-iee- (1.1 1 b )  

where A and 8 are real. These are respectively a real scaling symmetry and a phase 
symmetry which can be combined to form a 'complex scaling symmetry' see (3.2)). 

2. Prolongation structure 

We now investigate the existence of a non-trivial prolongation structure for complex 
quasi-polynomial evolution equations. 

Definition. K [ u ,  U] is complex quasi-polynomial if it is polynomial in the x-derivatives 
of U and C, but not necessarily in the U and U themselves. 

The usual polynomial K are in a subclass of these. 
We consider equations of the form: 

U, = a(u,  U ) U , + ~  + b ( u ,  U)U,+, + K ( u ,  U, U,, U,, . . . , U,, U,) (2.1) 

together with their complex conjugate. Here, a and b are almost everywhere C" 
functions of U and C, 

U, = alu/axl, uo = U and K is quasi-polynomial. 

We wish to determine those equations (2.1) which can be represented as the integrability 
conditions of a pair of linear equations: 

dJx = F4, q4 = G4 (2.2) 

where F and G are matrices whose size (and Lie algebra) is yet to be determined. 
The integrability conditions of (2.2) are 

F,-G,+[F, G]=O. (2.3) 

As explained in (Dodd and Fordy 1983), for evolution equations of the form (2.1) F 
and G usually have the following functional dependence: 

F ( u ,  4, G(u, 4 U I ,  61,. . . , U,, U,) (2.4) 

although, as a strict rule this is contradicted by the example (3.7) below. With (2.4) 
the integrability conditions (2.3) then decouple to give the system of partial differential 
equations: 

G,," = aF,, + 6F,,n, G,Q, = iiF,l, + bF,, 
(2.5) 
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For a given function K this is an overdetermined system of equations for F and 
G. These equations can be solved recursively for G in terms of the derivatives ui and 
U i  During the calculation some differential conditions on F arise. If these are 
consistent, then we can solve F in terms of U and U ;  if not, the equation (2.1) is not 
completely integrable. 

For a given equation this is a straightforward calculation. However, it is not a 
priori evident that the calculation can always be carried through from beginning to 
end. We next give an algorithm which proves that this can always be explicitly carried 
out. Furthermore, the algorithm is presented in such a way that it could easily be 
incorporated in an algebraic manipulative computer program. 

2.1, The algorithm 

For our calculations it is convenient to introduce the algebra P[u,  U] of polynomials 
in the indeterminates uJ, U,, j = 1, . , . , n over the ring of almost everywhere C" functions 
of U, U to which the quasi-polynomials belong. We shall also need the algebra P[u ,  U ,  F ]  
in the indeterminates uJ, U], F,;, where F E ; =  a'+] Flau'  a U J  i, j = 1, . . . , n, over the ring 
of almost everywhere C" functions of U, U .  The indeterminates F , ,  are elements of a 
Lie algebra so that we shall denote products in P[u, U ,  F ]  by the Lie bracket [ , 1 .  
Elements of P[u, U], P[u,  U ,  F ]  are graded by the highest-order u-indeterminate, uJ > U, 
for any i, j and uJ > U,, UJ > U ,  if j > i. It follows that for terms quadratic in the U, U 
indeterminates upJ > U& if i > 1 or if i = 1 and j > k. This is easily extended to arbitrary 
monomials in the U, U indeterminates, and thence to the whole algebra. For elements 
of P[u, U ]  which we shall denote by lower case italic letters, superscripts will indicate 
the highest U and U indeterminates in the polynomial. Thus p" means that U, and 4 
are the highest order U and U indeterminates in p" ; if i = j then we write p i  for p " .  
Elements of P[u ,  U ,  F ]  will be denoted by capital letters. For elements of this algebra 
it is convenient to also indicate the highest order F,; indeterminate which occurs. In 
this case we make no distinction between the barred and unbarred indices. Thus H"'"' 
denotes a polynomial in which U,, UJ are the highest U, U indeterminates and in which 
members of the set {F ly :  i + j  = U} (some possibly absent) are the highest order F,; 
indeterminates ( F , ; >  F,E if i +J > 1 + k ) .  We shall write H('*") for H'""' and omit the 
U index if this is unknown. The algebra P[u,  U, F ]  becomes a differential algebra under 
the action of the operators a/au,  a/uJ, d / a U J  which are defined by 

The operators alau,  a / a U  also act on the coefficients of the polynomials and define an 
isomorphism of the ring. The inverse operators are operators of integration. We shall 
denote by a]:' and a i '  the integral operators corresponding to aldu, and a / a U j  and 
which are defined in the obvious fashion. 
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2.2. The general evolution equation 

The class of evolution equations which we consider can be written as 

U, = UU,+l +ban+,  + p n  

where p" E P[u ,  a]. The fundamental equation (2.5) becomes, 

G,un = aFl + 6Fi,  G,,-+= dFT+bF, 

From the first relations in (2.8) we obtain 

G = ( uFI + 6Fi)u f l  + (dF7 + bFI)G, + L("-') ,  L( " - I )E  P[u, a, F ] .  (2.9) 

The second equation in (2.8) can now be written as 

Essentially this consists of a polynomial in uj, Gj which has order n. Thus we can write 
it as 

(2.11a) 

(2.11b) 

(2.11c) 

I 1 are known polynomials and Hr$fi)  = Hi$&). Equation The N(fl.2) M(n-I.2) H(fl-I.1) 
(2.1 1 a )  is either identically satisfied or imposes conditions on the F indeterminates. 
Since these constitute partial differential equations for F we shall call them F-equations. 

If we integrate the equations (2.1 1 b )  we obtain 

(2.12) L ( n - 1 )  = a;' M ( n - l . 2 )  +a,' M*(n-I*Z) + L ( n - 2 )  
" - 1  " - 1  

The substitution of this expression into (2.1 I C )  results in a polynomial in U,, GI of 
maximal degree ( n  - 1). If we repeat this operationj times ( j  integrations) then we get 

N(n-',2+') - N ( n - J 9 2 + J )  > 1 -0  deg U.-,.Li.-] 

9 (2.13) ( n - 1 - J )  = M' n-1-1,2+1) L (-n-I -J)  = M*(n-l-J.2+J) 
7 h - 1  -I L, U " _ ,  -, 

f l - I - ]  f l - 1 - J  c u,L,u(-, + L,$-:I-')= [F, L ( n - l - J ) ]  + H ( n - l - A J + l )  

I =  I 1 = 1  

Thus at each step we produce further F-equations, if N(n-J,2+') = 0 is non-trivial, and 
a reduction in the order of the quasi-polynomial to be determined. The process 
terminates when j = n - 1. The F-equations have to be checked for consistency and F 
is determined from them up to coefficients { X , }  which belong to the prolongation 
algebra. 



3254 R K Dodd and A P Fordy 

Example 1. The simplest non-trivial example which one can consider and which is 
the subject of detailed analysis in the next section is the equation 

(2.14) U ,  = au2 + bU2 + p ( ' ) .  

For this example one finds that 

G = (aFI+ 6Fi)uI + ( d F j +  bFl)Ul f Los 

For a non-trivial result 

p =  a ( u ,  U ) u : + p ( u ,  a ) U : + y ( U ,  U ) U l t i ,  

+ S ( u ,  U ) u l  + & ( U ,  U)U, + A ( u ,  U). 

The F-equations are determined from the set 

OF, +PFj - (aF i  +6FT)l=O 

PFI + (YFi- (GFT + bF1)T = 0 

y F ,  + YFi- (GFT + bFl)i - (aFI + 6FT) j = 0 

SF1 + E F i S [ F ,  aFI+KFi]= Ly 

EFI +SFy+[F, dF i+bFl]=  Lp 

AFI +IFT+[F,  LO]=O. 

(2.15) 

(2.16) 

(2.17) 

(2.17) 

Clearly we cannot hope to solve (2.17) for an arbitrary equation, however for a given 
equation the equations (2.17) can be solved. 

We consider some special subclasses of (2.14) in the following sections. 

3. Scaled evolution equations 

In this section we look more closely at the class of equations 

U ,  = au2 + bU, + K ( U ,  U, u I ,  UI). (3.1) 

We discuss various subclasses of (3.1) for which the solution of (2.17) is more 
transparent. In this way we derive several solvable classes of equation (3.1). We exploit 
the notion of a complex scaling symmetry: that is, a real scaling symmetry together 
with a phase symmetry. 

Dejnition. The evolution equation (2.1) is said to have a complex scaling symmetry 
if it is invariant under the transformation: 

U + A" eiou, x + APx, t + A Y t ,  h > 0. (3.2) 
In this section we consider only those equations (3.1) which possess a complex scaling 
symmetry. 

Recall from § 2 that for equation (3.1) to have a non-trivial prolongation structure 
the function K must be of the form 

(3.3) 
where k'"= k ( ' ) ( u ,  U ) .  For (3.2) to be a symmetry of (3.1) with y = 2 P  we need 

K = k'l'u: + k'2)U: + k ' 3 ' ~ l  U l  + k'4'uI + k'5'P, + k ( 6 )  



Prolongation structures of complex equations 3255 

Case 1 .  When a = 0 then k(4) = k") = k(6' = 0 and equation (3.1) reduces to: 

U, = a luz  +bIu2U2 + d , u - ' u :  + d 2 u F 2 u ?  +d ,u- Iu ,u ,  

where a l ,  61 and d, are functions of /U/'. 

Example 2. Wadati et a1 (1979) have shown the equation 

to be solvable. When the double derivative is expanded this equation takes the form 
(3.5). In appendix 3 we rederive the results of Wadati er a1 using the methods of this 
paper. 

Example 3. Nijhoff et al (1982) have considered the equation: 

4r =i42-(2i/q)q,41. (3.7) 

This is of form (3.5) with a ,  = i, 61 = d ,  = d,  = 0 and d,  = -2i. Substituting these values 
into (2.17) soon leads to a contradiction. The origin of the contradiction is that 
condition (2.4) cannot be satisfied. For equation (3.7) we need F ( u ,  ii, u l ,  U,). The 
corresponding calculation will be found in appendix 2. The linear problem is found 
to be 

44 = w, 4% = G4 

where e,, h are the basis (1.9) for sl(2, C ) .  

NLS equation 
It is evident that we can make the substitution Q = q 1 / @  Q is found to satisfy the 

Q, = iQ2 - 2iQ2Q. (3.9) 

Finally, we consider the restricted class of case 1 for which 6, = 0. The transformation 
U = e" gives an equation which does not admit a phase symmetry: 

U, = av,+(n +fl)v:+f2B:+f3U,ul (3.10) 
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where the coefficients a,J; are functions of the sum U + 0. There exists a viable real 
restriction: f 2  =f3 = 0, a and f l  real constants gives the potential Burger's equation. 

Case 2. When a # 0 then a is constant, b = 0 and each k ( ' )  is determined up to a single 
constant: 

k ( ' )  = dlu-l ,  k ( 2 ) =  d 2 ,  ufi-2 k(3) = d 3 a-1 (3.1 l a )  

c luni in  if p = -2na 
otherwise 

if p = - 2 ( m + l ) a  
otherwise 

i o  
k(4) = 

k(5) = 

if p = -la 
otherwise 

ci, di E C, a #O. (3.1 1 b )  

The equations (3.11 b )  are mutually consistent if we take 1 = 2n, m = n - 1. 
Thus the most general scale invariant form of (3.1), with a # 0, is given by 

(3.12) 

It is possible to substitute the above forms for k( ' )  in the prolongation equations (2.17). 
The first three equations of (2.17) are homogeneous in U and P, so can be solved by 
taking linear combinations of solutions uaUB for allowable a and p. However, this is 
rather tedious and not very illuminating. We present an interesting subclass for which 
di = 0. 

When di = 0, F is easily found to be: 

F = X , U  +XZii + X 3 ~ t i  +X4 (3.13) 

and if a + ci # 0 then X 3  = 0. In addition we find that 

+ duP[X, ,  X , ]  - a u [ X , ,  X,]  - ciUii[X3, X,] 

+ d u 2 i i [ x l x 3 ] + x o  

+ [XI U + x, P + x, U P  + x,, LO] = 0.  

c3u2n+'ii2nx1 +C3d2n+lu2"X2 +(c ,  +C3)u2n+Iii2n+'x3 

( 3 . 1 4 ~ )  

(3.14b) 

The symmetry (3.2) imposes transformation properties on the generators {Xi}:=,.  With 
the conditions (3.1 1 )  these are: 

e-"X1, x2+ A ( 2 n - l ) a  eiex2.  X o  + A 4 n a ~ 0 ,  

x3+ 1 \ 2 ( n - l ) a  

X I  + A(Zn-1)" 

x3, X ,  + A 2naX4. (3.15) 

The integrability conditions for Lo give the following three classes of constraints on 
the prolongation algebra. 
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(I)  n = O  

(11) n = 1 

(C,-2C2)X1-2d[X,, X J = O  

(2E2-E,)X,+2a[X,, X,]=O 

((c, + 2 2 )  - (c2 + El))X3 = 0 

( a + n ) [ X , , X , ] + ( a - d ) [ X 3 , X , ] = O  

(111) n #O, 1 

(ncl - ( n  + l ) c 2 ) X ,  = 0, ( (n+1)C2-nCl)X2=0 

((c, + E 2 )  - (c2 +E,))X3 = 0 

( a  + d ) [ X , ,  X,] + ( a  - d)[X3,  X,] = 0 

[X2, X3I = 0 [ X i ,  X3I = 0. 

(3.17) 

(3.18) 

It is necessary to consider each of the cases ( I ) - (HI)  in turn. 

Case I. Here the equation takes the form 

u , = a u 2 + c I u I  +c2uP- lP1  +c3u. (3.19) 

By using U + e-c3ru we can transform c3 to zero. By a real Galilean transformation 
x +  x +pt,  /3 = Re(c,) we can make cI pure imaginary. For a nonlinear equation we 
require c2 # 0. Thus (3.16) implies X I  = X 2  = 0. Recall that a + d # 0 + X 3  = 0, which 
would lead to a trivial prolongation structure. Thus a + d = 0. The remaining elements 
{X,, X 3 ,  X 4 )  form a complete Lie algebra: 

(3.20) 

where a = ( 1/2a)(  c2 + E l  - c ,  - E2) .  The single Jacobi identity is satisfied and leads to 
no restrictions on the parameters. These elements just form the lower triangular, 
solvable subalgebra of sl(2, C ) :  

X ,  = e-, X 4 = f a h  +A2"e-, X,=(c,+E, + a a ) X ,  (3.21) 

where e- and h are given by (1.7). The corresponding linear problem 

(3.22) 

cannot be used to construct the whole function U but only the square of its modulus 
UP. Furthermore, with a + d = 0 it is not possible to combine (3.19) and its complex 
conjugate to derive an equation autonomous in UP. 
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Case Il. Here the equation takes the form 

U, = au, + Cl UUUl+ C,U’Ul + C3U3U2.  (3.23) 

The integrability conditions (3.14) lead to (3.17) and 

There are two subcases to consider: c3 # 0 and c3 = 0. 

Case Ila.  c, # 0. First we dismiss the case a + d # 0, for then we have X, = 0, which 
immediately implies XI = Xz = 0 and a trivial prolongation structure. We thus have 

(3.25) 

C 2 [ x 2 ,  x3] = -21?3x2. (3.25) 

We assume cz Z 0 (the case c2 = 0 is trivial), so that 4uE3 = c2(2E2 - Cl) ,  which, by the 
reality of a?,, leads to 

(CI - c,)( c2 - 22) = 0. (3.26) 

The elements {X,}: must satisfy (3.25) and 

(3.27) 
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The remaining element X o  is defined by (3.24b). The resulting algebra can be represen- 
ted in terms of the basis (1.9) of sl(2, C): 

X i  = pAe-, X2 = aAe+, X 3 = ( 1 / 4 ~ ) ( 2 ~ 2 - ~ , ) h  

X4= rA2h, X,= -2ar2A4h (3.28) 

where p a  = ( l / a ) ( c l  - c2)r .  We have taken into account the transformation properties 
(3.15) (with a = 1 )  of the prolongation algebra and the automorphism (1.1 l a )  and 
(1.1 1 b) of sl(2, C). This sl(2, C)  closure forces both parameters c I  and c2 to be real. 
In summary, the equation (a  = i) :  

U, =iu,+c,uiiu, + c 2 u 2 ~ ,  -$c,(2c2-cl)u3ii2 (3.29) 

is isospectral to the linear scattering problem: 

)(;:) (3.30) 
T A  - $(2c2 - c ,  ) uii uAii (;l)x=( PAU - 7 ~ ~  +$(2c2- c,)ui i  

where the parameters p, a and T can be chosen at will, subject to the condition following 
(3.28). Notice that the case c ,  = c2 is degenerate and corresponds to a = 0 and therefore 
X 2  = 0. Equation (3.29) represents a 2-parameter family of isospectral flows of (3.30). 
The special case of cI = 2c2 is the DNLS equation discussed by Kaup and Newell (1978). 

Case ZZb. cj = 0. This condition immediately implies that: c2[X2,  X,] = 0. The case 
c2 = 0 is the DNLS equation (1.4) of Chen et a1 (1979). This was considered in our 
previous paper I. With a = i and c ,  = -2, the corresponding linear problem is 

(3.31) 

We thus consider the case c2 # 0. This immediately implies 

X 3  = 0, c ,  = 2c2. (3.32) 

In order to obtain a non-trivial algebra we must have a + d = E2 - c2 = 0. With condition 
(3.32) equation (3.23) reduces to the DNLS equation of Kaup and Newell (1978), so 
we omit the details. 

Case 111. This is the case of n # 0, 1. When n # f the prolongation algebra proves to 
be trivial. Therefore we have n = 4. For a non-trivial algebra we need cI = 3c2, X ,  = 0. 
Equation (3.12) takes the form: 

U, = au2+2C,(U3’2ii”2), +c3u2ii. (3.33) 

If c2 = 0 then (3.33) reduces to the well known NLS equation (1.1). Therefore we assume 
c2 f 0. In this case for a non-trivial algebra we require X ,  = X 4  = 0, a + d = 0. The 
algebra then reduces to: 

x211= c3xl, 4 x 2 ,  [XI,  X2ll= E3X2 

(3c,- E , ) [ X , ,  X , ]  = 0. 

Xi = A-’pe-, X, = Awe,, p a  = -c,/2a, 

(3.34) 

An sl(2, JZ’) representation of the algebra is given by 

E3 + c j  = 0, ?, - c2 = 0. (3.35) 
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It is interesting to observe that in this case the spectral parameter arises from the phase 
symmetry U + Au, P + A-’;. The equation (3.33), c2 # 0, is thus isospectral to the linear 
scattering problem 

(3.36) 

4. Conclusions 

In this paper we have extended the ideas of I from real to complex evolution equations. 
We presented an algorithm and applied it to second-order complex equations of NLS 

type. However, for the general equation (2.14) we only ‘set up’ the problem, presenting 
the system of equations (2.17) to be satisfied by the various functions occurring in 
(2.15) and (2.16). We did not solve these equations in such a general context. In 0 3 
we considered scaled, quasi-polynomial flows and calculated some interesting new 
examples. However, even here we did not exhaust all the possibilities. In the case of 
(3.5) we only gave a few specific examples. In the case of (3.12) we exhausted the 
possibilities when di = 0 but did not touch upon the general situation. Thus, there is 
still much to do even in the case of scaled equations. 

However, there are generalised scaled equations not included in 0 3 at all. For 
instance, integrable deformations of the scaled equations of 0 3 would contain scaled 
parameters. For instance, the deformed NLS equation which is the second-order flow 
of 

(4.1) 

has the correct scaling properties provided & + A - ’ & .  This is the complex version of 
(4.4.12) in I. We consider the prolongation structure of deformed equations in another 
paper (Dodd and Fordy 1984). 

Finally we mention that if a complex equation admits a phase symmetry, even a 
discrete phase symmetry, (see the example of appendix 4) then it seems likely that the 
representation of the simple Lie algebra can be immediately determined. In the scaled 
equations of 0 3 the simple algebra is sl(2, C) whereas for the example of appendix 4 
it is sl(3, C). We intend to investigate this further elsewhere. 
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Appendix 1. Generalised symmetries 

In this appendix we consider those functions K for which (3.1) (with b = 0, constant 
a )  admits a generalised symmetry. To do this we try to construct an evolution equation 
which commutes with (3.1). Such evolution equations are expected to exist from the 
general theory of commuting isospectral flows of a given eigenvalue problem. 
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We start with the second-order equation 

u , = a u 2 + K ( u , ~ , u l r  a , )  (Al . l )  

and its complex conjugate. We seek a commuting third-order flow: 

U,= f(u, a,. . . , u3, i i 3 )  (A1.2) 

and its complex conjugate. For (Al . l )  and (A1.2) to commute (ut,  = U,,), f satisfies: 

(A1.3) 

where 

and 

a m  a 
at  au, 

D , = - + C  ui,- 

are the total x and t derivatives respectively. 

Remark. Although it is to be expected that (Al . l )  will possess an infinite number of 
commuting flows (if it is solvable) there is no guarantee that it has a third-order 
commuting flow. We have thus restricted attention to a subclass of equations (A1.1). 
We further assume that f be of the form 

f = c u , + H ( u , f i  , . . . ,  uz,a, ) .  (A1.4) 

The functions H and K must satisfy 
I 

aD2H + i ( c u ~ + ~  + D'H)K,,, + 1 ( Ci i3+ i  + D1fi)Kfi, 
i = O  i = O  

= c D 3 K  + 1 ( c u ~ + ~  +D'K)H,, ,  + 1 (riii2+, +D'I?)H,G,. (A1.5) 

This system of equations is rather like (2.5) and is solved by a similar recursive 
procedure. Since H and K contain nothing higher than u2 and I&, we start by equating 
coefficients of u3 and ti3, giving: 

i = O  i = O  

(A1.6) 

The system (A1.5) is highly overdetermined, so with enough stamina we could carry 
the calculation through to the end. We would find an H given purely in terms of K 
together with some differential conditions on K ,  telling us which equations are (most 
probably) solvable. This type of calculation has been performed by Ibragimov and 
Shabat (1980) and Fokas (1980) for second- and third-order equations for one real 
function U. The number of possible cases turns out to be enormous. 

For systems of equations, such as our complex equation, this method is far less 
practical. Furthermore, to obtain the linear problem we would still have to do the 
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prolongation calculation. It is thus simpler to go straight to the prolongation calcula- 
tion. Once the linear problem has been found the whole hierarchy of commuting flows 
can be generated in the usual way. 

Appendix 2 

In this appendix we consider the prolongation structure for the equation (3.7) (Nijhoff 
et al 1982) 

where 
qr = iq, +if(% 4 h 4 r  

f ( s ,  4 )  = -2/4. (A2.1) 

The equation admits the phase symmetry 

q + ei*q, 4 + e?* 9. (A2.2) 

If we assume, as we have done throughout the paper, that F = F ( q ,  4 )  then we rapidly 
find that 

(A2.3) 

and that the constraints on the algebra require that X 2 = X 3 = 0 .  This results, after 
considering the scaling, in a trivial prolongation structure. This equation furnishes an 
example where it is necessary to include the first-order derivatives in F in order to 
obtain a non-trivial WE-prolongation, 

(A2.4) 

Cases such as these have been excluded from I and the present paper. In this case 
we obtain from the equation 

F = qqx, + qx* + 4x3 + x, 

F =  F ( q ,  41, 4, 41). 

D,F- D,G+[F, G]=O (A2.5) 

(A2.6) 

(A2.7) 
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The last equation of (A2.7) integrates to give (from scaling) 

A = -x,/Iql2 (A2.8) 

and 

D = dX,,  B = qbX, (A2.9) 

where d = d(qq), b = b( qi j )  provided A # 0. Thus we see from (A2.7) that A = 0 and 

g = iq ,  q l  ( B f  - Cf + [ C, B ]  + C, - BT) 

+ iq, ( D,  + [ D, B ] )  - iij, ( D i  + [ D, C ] )  + iE (A2.10) 

where E = E ( q ,  4 ) .  From (A2.10) and (A2.6) we obtain a system of PDE’S in the 
unknowns B, C, D and E. Moreover they involve the Lie bracket of the algebra and 
so are not simple to solve. We adopt the strategy of I in order to solve the PDE’S. We 
assume a homomorphism of the prolongation algebra into a simple Lie algebra starting 
with sl(2, g). If the underlying simple algebra is sl(2, C )  then the scaling suggests 

(A2.11) 

We then obtain from (A2.6) a series of PDE’S for b, c, d and e. These equations are 
easily integrated and using the scaling symmetry we find that 

F = bq, e+ + cq, e- + dh. 

b = 4-l c = -q ‘  d = A  and E = A2h (A2.12) 

Piecing the information together, we finally obtain the linear problem (3.8). 

Gauge Transformation. Suppose we have a single real equation, isospectral to 

4 x  = F4, F = A ( q ) + B ( q ) q x .  (A2.13) 

If 6 = T ( q ) 4  is a gauge transformation we have 

p(q,  q , ) T =  T ( A + & , ) + T , q ,  (A2.14) 

since T, = TqTx. Thus, with F ( q ,  4,) linear in q, we can choose T ( q )  so that 

T,+TB=O (A2.15) 

and make fi independent of 4,. Thus whenever F depends upon qx linearly we can 
gauge this dependence away. Similarly, if F depends upon many derivatives then the 
dependence upon the highest can be gauged away provided this derivative occurs only 
linearly. 

Unfortunately, the above manipulation may not be possible when dealing with a 
system of real equations or even one complex equation, for then: 

4, = F4, F = A(q ,  4 )  + W q ,  a s ,  + C(q, 4)4r (A2.16) 

To remove qx and qx by gauge transformation 6 = T (  q, 4) 4 we need 

Tq + TB = 0, Tq + TC = 0 

and this is only possible if the following integrability conditions are satisfied 

(A2.17) 

B,q-Cq + [ B ,  C ] = O .  (A2.18) 
Since (A2.11) does not satisfy these conditions, we cannot gauge away the q ,  and 4, 
dependence of F. 
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We derive, using the prolongation method, the isospectral problem for the equation 
(3.6) Wadati et a1 1979) 

(A3.1) 

Put f(q4) = ( 1  - lq12)-1’2 then equation (A3.1) can be written as 

ql=i(aq2+bij2+cq:+dqlqi +eq:) 

where 

a = if( 2 + q f j j - 2 )  b = i f 3 q 2  = q f 3 (  1 +:qijf2) 

d = q f 3 ( 2  + i q q f 2 )  , = 2  4 q  3 f .  5 (A3.2) 

We find that 

G=i(aFl  -6Fi)ql + i (bF, -dFi )QI  + g ( q ,  4 )  

and that three of the F-equations are 

(+( 1 - qq)qq - 1) F 2  e:( 1 - qq)q2Fii  = 0 

(+( 1 - qq)qq - 1)  Ff-i( 1 - qq)q2F, i  = 0 

dF1- JFi-( bFI - Z F i ) ,  - (OF, - 6Fi)i = 0. 

The solution to the F equations (A3.3) is given by 

F = qXI + qX2 + X3. 

(A3.3) 

The remaining F-equations define the prolongation algebra 

[ X l q  +X2q+X3, - 2 f [ X i ,  &I+qf [X2 ,  X J - q f [ X i ,  X3I +XoI=O. 

Scaling arguments then give 

F = i h h  +hqe+ +hije- 

G = i( 1 - ~ 4 ) - ~ ’ ~ { - 2 A ~ (  1 - qq)h + i h ( ( 2 -  @ ) q l  + q 2 4 ,  

-4iAq( 1 - qq))e+-iA((2 - q i j ) i j ,  + q 2 q l  -4iAij(l- @))e-)  (A3.6) 

which is the linear problem given in Wadati et al (1979). 

(A3.4) 

(A3.5) 

Appendix 4 

In this appendix we consider the prolongation structure for the equation 

91 = iq2 + M q 2 )  (A4.1) 

which was introduced by Mikhailov and Zakharov (see Mikhailov 1981). This presents 
an example where the representation is obtained from a homomorphism of the pro- 
longation algebra into sl(3, C ) .  
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From the example considered in § 2, equations (2.14)-(2.17), we quickly find that, 

F = X l q + X 2 q + X , q q + X 4  

(A4.2) 

[F, LO] = 0. 

The two equations for Lo can be integrated to give 

Lo= q2Xl +q2X2-iq[Xl, X4]-iqG[Xl, X2]+i4[X2, X4]+Xo. (A4.3) 

It is also found that the integrability conditions require that X, = 0. Consequently we 
have 

G=(iql+q2)Xl+(- i~ l+q2)X2- iq[Xl ,  X4]-iqq[Xl, X21+i~[X2,  X41+Xo (A4.4) 

and the prolongation algebra is defined by 

(A4.5) 

x + A- lx ,  t + A-'t ,  4+Aq  (A4.6) 

so that the algebra has the following automorphism 

XI + XI, x2 + x2, x4 + AX,, Xo + A 'X0. (A4.7) 

If we attempt to find a homomorphism of (A4.5) into sl(2, C )  then we quickly find 
that there is only the trivial solution (XI and X2 have to be proportional to h ) .  In 
fact a homomorphism of the prolongation algebra into sl(3, C) is easy to find because 
(A4.1) admits a discrete phase symmetry, 

q+p2q where p 3 =  1. (A4.8) 
Then we find that 

XI + G I ,  x2+ CL-Ixz, x4 + x4, Xo + Xo. (A4.9) 

Then if we consider the transformation of the simple roots of sl(3, C)  according to 

eaL + Peel ecm, + p- '  e-a, 

sl(3, C) has the natural scaling 

(A4.10) 

(A4.11) 
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It is then easy to check that 

0 1 0  
(A4.12) 

1 0 01 
v 3  

and then from a particular choice of the scaling (A4.7) and the usual cyclic 
requirement, 

x, = cx:, x:= I 
so that a calculation quickly gives 

p-'  0 0 

xo=-J3 0 p 0 i 0 0 1  

The parameter can be put into the problem using (A4.7) 

0 9 9  p 0 0 '  

0 0 1 '  

(A4.13) 

(A4.14) 

(A4.15) 

Remark. Equation (A4.1) is a transformed version of the modified Boussinesz equation 
(Fordy and Gibbons 1981). The linear problem (A4.15) is just that of the third-order 
modified Lax system but written in the circulant basis (Kupershmidt and Wilson 1981). 
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